关于数学的历史故事 历史上著名的数学故事有哪些

一、著名数学家的故事

我的最有吸引力!!!!!!!!!!!!!!!!!!!!!!!!哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的佳话。

有一次,哥德巴赫研究一个数论问题时,他写出:

3+3=6,3+5=8,

3+7=10,5+7=12,

3+11=14,3+13=16,

5+13=18,3+17=20,

5+17=22,……

看着这些等式,哥德巴赫忽然发现:等式左边都是两个质数的和,右边都是偶数。于是他猜想:任意两个奇质数的和是偶数,这当然是对的,但可惜这只是一个平凡的命题。

对—般的人,事情也许就到此为止了。但哥德巴赫不同,他特别善于联想,善于换个角度看问题。他运用逆向思维,把等式逆过来写:

6=3+3,8=3+5,

10=3+7,12=5+7,

14=3+11,16=3+13,

18=5=13,20=3+17,

22=5+17,……

这说明什么?哥德巴赫自问,然后自答:从左向右看,就是6~22这些偶数,每一个数都能“分拆”成两个奇质数之和。在一般情况下也对吗?他又动手继续试验:

24=5+19,26=3+23,

28=5+23,30=7+23,

32=3+29,34=3+31,

36=5+31,38=7+31,

……

一直试到100,都是对的,而且有的数还不止一种分拆形式,如

24=5+19=7+17=11+13,

26=3+23=7+19=13+13

34=3+31=5+29=11+23=17+17

100=3+97=11+89=17+83

=29+71=41+59=47+53.

这么多实例都说明偶数可以(至少可用一种方法)分拆成两个奇质数之和。在一般情况下对吗?他想说:对!于是他企图找到一个证明,几经努力,但没有成功;他又想找到一个反例,说明它不对,冥思苦索,也没有成功。

于是,1742年6月7日,哥德巴赫提笔给欧拉写了一封信,叙述了他的猜想:

(1)每一个偶数是两个质数之和;

(2)每一个奇数或者是一个质数,或者是三个质数之和。

(注意,由于哥德巴赫把“1”也当成质数,所以他认为2=1+1,4=1+3也符合要求,欧拉在复信中纠正了他的说法。)

同年6月30日,欧拉复信说,“任何大于(或等于)6的偶数都是两个奇质数之和,虽然我还不能证明它,但我确信无疑,它是完全正确的定理。”

欧拉是数论大家,这个连他也证明不了的命题,可见其难度之大,自然引起了各国数学家的注意。

人们称这个猜想为哥德巴赫猜想,并比喻说,如果说数学是科学的皇后,那么哥德巴赫猜想就是皇冠上的明珠。二百多年来,为了摘取这颗耀眼的明珠,成千上万的数学家付出了巨大的艰苦劳动。

1920年,挪威数学家布朗创造了一种新的“筛法”,证明了每一个充分大的偶数都可以表示成两个数的和,而这两个数又分别可以表示为不超过9个质因数的乘积。我们不妨把这个命题简称为“9+9”。

这是一个转折点。沿着布朗开创的路子,932年数学家证明了“6+6”。1957年,我国数学家王元证明了“2+3”,这是按布朗方式得到的最好成果。

布朗方式的缺点是两个数都不能确定为质数,于是数学家们又想出了一条新路,即证明“1+C”。1962年,我国数学家潘承洞和另一位苏联数学家,各自独立地证明了“1+5”,使问题推进了一大步。

1966年至1973年,陈景润经过多年废寝忘食,呕心沥血的研究,终于证明了“1+2”:对于每一个充分大的偶数,一定可以表示成一个质数及一个不超过两个质数的乘积的和。即

偶数=质数+质数×质数

你看,陈景润的这个结果,离哥德巴赫猜想的最后解决只有一步之遥了!人们称赞“陈氏定理”是“辉煌的定理”,是运用“筛法”的“光辉顶点”。

想想练练

1.50以内有15个质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47.请选出10个填入图内,使○+○的和等于同一个50以内的偶数,把这个偶数填入中间的○内。

2.用给出的:3、3、5、5、7、7、11、11、13、13、17、17、19、23、23、23这16个数,根据哥德巴赫猜想,写出8个连续的偶数。

摘取数学皇冠上的明珠——陈景润(1933~1996)

在现代数学史上,陈景润的名字与哥德巴赫猜想紧紧联系在一起。被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位。

1953年,陈景润毕业于厦门大学数学系。由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调入中国科学院数学研究所工作,后来就有了“罗庚慧眼识景润”的佳话。虽然当时的生活条件非常艰苦,在仅有6平方米的小屋里陈景润坚持埋头于哥德巴赫猜想的研究,经过无数个日夜、几度寒暑的艰苦努力,终于取得了震惊世界的成就。然而,陈景润付出的努力也是惊人的,用掉的演算草稿纸可以装满几个麻袋,并且积劳成疾。即使如此,躺在病榻上的他,仍锲而不舍地耕耘着。陈景润在数论中其他著名问题,如高斯圆内格点问题、球内格点问题、塔里问题、华林问题等的研究上也做出了重要贡献。

欧拉

欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。

欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。

尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。

欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a、b、c表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式:

又把三角函数与指数函联结起来。

二、数学历史上100字的小故事

1、库默尔屈就为一个中学教师时,有一天上课,在黑板上运算却忘了七和九的乘积!他犹豫很久讲不下去时,有学生说答案是61,他依着写下了。

怎知另一声音说他应该写69。

库默尔当然晓得正确答案只有一个,至于是61、69或其他数目,他不能决定了。

于是他开始分析,高声说61是质数,不会是一个乘积,65是5的倍数,67也是质数69看来太大,所以答案是63吧!

2、公元前46年,罗马统帅儒略·恺撒指定历法。

由于他出生在7月,为了表示他的伟大,决定将7月改为“儒略月”,连同所有的单月都规定为31天,双月为30天。

这样一年多出一天,2月是古罗马处死犯人的月份,为了减少处死的人数,将2月减少1天,为29天。

3、叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。

当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。

根据这一道理,就可以判断皇冠是否掺假。

4、华罗庚上中学时,在一次数学课上,老师给同学们出了一道着名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。

5、公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟-子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。

这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。

希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。

不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。

15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。

人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来。

同时它导致了第一次数学危机。

三、历史上著名的数学故事有哪些

1、高斯巧解算术题

高斯在数学和科学的许多领域都有特殊的影响力,被列为历史上最有影响力的数学家之一。高斯从小就是一个爱动脑筋的聪明孩子,他在8岁时就发现了数学定理。当时高斯上小学,老师在班上出了这样一道题,让学生从1+2+3……一直加到100为止。

老师想这道题足够这帮学生算半天的,他也可以得到半天悠闲。哪知过了一会儿,小高斯就举起手来,说他算完了。老师一看答案,5050,完全正确。老师惊诧不已,问小高斯是怎么算出来的。他就说先算1+100=101,2+99=101,这样一共有50个101,因此结果是5050。这就是著名数学家高斯的故事,巧解算术题。

2、阿基米德测皇冠

阿基米德大家都很熟悉,他是伟大的古希腊哲学家、数学家、物理学家、力学家,享有“力学之父”的美称,和高斯、牛顿并列为世界三大数学家。阿基米德有许多故事,其中最知名的要算发现阿基米德定律的那个测皇冠的故事了。

传说希伦王召见阿基米德,让他鉴定纯金王冠是否掺假。他冥思苦想多日,在跨进澡盆洗澡时,从看见水面上升得到启示,作出了关于浮体问题的重大发现,并通过王冠排出的水量解决了国王的疑问。随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。

3、牛顿煮怀表

牛顿作为科学史上最有影响力的科学家之一,被誉为是“物理学之父”。其实牛顿除了是世界著名的物理学家外,还是一位数学家,其创立了微积分。说起数学家的故事,想必不少人想到了牛顿煮怀表这个故事。牛顿醉心于科学研究,工作时十分投入。

一次,牛顿一边思考着问题,一边煮鸡蛋。突然,锅里的水沸腾了。牛顿赶忙掀锅一看,“啊!”他惊叫起来,发现锅里煮的是一块怀表。原来他在专心考虑问题时竟心不在焉地随手把怀表当做鸡蛋放进了锅里。

4、泰勒斯量金字塔

关于数学的经典故事,有不少,泰勒斯便是第一个测量出金字塔高度的人。几何学家泰勒斯是古希腊第一位享有世界声誉,有“科学之父”和“希腊数学的鼻祖”美称的伟大学者。有一天,泰勒斯看到人们都在看告示,便上去看。原来告示上写着法老要找世界上最聪明的人来测量金字塔的高度。于是泰勒斯找法老,法老问泰勒斯用什么工具来量金字塔。

泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。把这两个长度加起来就是金字塔的高度了。泰勒斯便是利用了相似三角形的性质算出了金字塔的高度。

5、小欧拉机智改羊圈

欧拉是18世纪数学界最杰出的人物、数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。但欧拉小的时候,不讨老师喜欢,被学校开除。他回家后无事,就帮爸爸放羊。

有一个关于小欧拉数学趣味小故事,就是在这时发生的。爸爸的羊群渐渐增多,达到了100只,需要重新修改羊圈。正打算动工时,就发现了问题,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。后来父亲按照小欧拉的办法来做,果真材料也够,面积也够。

相关推荐

最新

相关文章